Inhaltsverzeichnis

Vo	orwor	t	7
1	Fun	damentale Konzepte: Das Trägheitsgesetz	13
	1.1	Die Aufgabe der Mechanik	14
	1.2	Formulierung des Trägheitsgesetzes	15
	1.3	Das Trägheitsgesetz und die Physik des Auffahrunfalls	20
2	Ges	chwindigkeit und Beschleunigung – Bewegungen im Sport	27
	2.1	Geschwindigkeit und Beschleunigung im Sport	28
	2.2	Hammerwurf	28
	2.3	Geschwindigkeit und Beschleunigung beim Bungeesprung	38
	2.4	Weitsprung und schräger Wurf	43
	2.5	Der Grand Jeté und die Wurfgesetze	54
3		damentale Konzepte: Das newtonsche Bewegungsgesetz	57
	3.1	Kinematik und Dynamik	58
	3.2	Kopfball	59
	3.3	Das newtonsche Bewegungsgesetz	64
	3.4	Umgang mit der newtonschen Bewegungsgleichung	68
4		newtonsche Gesetz anwenden – Sicherheit im Auto	73
	4.1	Unfall ohne Sicherheitsgurt	74
	4.2	Das newtonsche Bewegungsgesetz und die Sicherheit im Auto	77
	4.3	Die Knautschzone	79
	4.4	Sicherheitsgurte	81
	4.5	Gurtstraffer	84
	4.6	Die Bewegung des Fahrers relativ zum Auto	85
	4.7	Airbags	88
5	Fundamentale Konzepte: Arbeiten mit der newtonschen Mechanik		91
	5.1	Systemgrenzen und äußere Kräfte	92
	5.2	Das dritte newtonsche Gesetz	97
	5.3	Wechselwirkungsprinzip	100
	5.4	Zwei Arten, das zweite newtonsche Gesetz zu verwenden	104
	5.5	Mechanische Probleme nach Rezept lösen	110
	5.6	Haft- und Gleitreibung	113
	5.7	Genauere Analyse einiger einfacher Beispiele	118

6	Real	e Bewegungen modellieren – Ein Sturz aus 30 000 m Höhe	127	
	6.1	Die höchste Stufe der Welt	128	
	6.2	Erstes Modell: Freier Fall	130	
	6.3	Modellieren des Sturzes	131	
	6.4	Fallschirmsprünge mit konstanter Luftdichte	136	
	6.5	Numerische Integration der Bewegungsgleichungen	149	
7	Func	lamentale Konzepte: Energieerhaltung	161	
	7.1	Energieformen	162	
	7.2	Energieumwandlungen	167	
	7.3	Felder, Kraft und potentielle Energie	168	
	7.4	Energieerhaltung	170	
	7.5	Antrieb aus eigener Kraft	182	
	7.6	Muskelkraft und Arbeit	187	
	7.7	Die Bedeutung der potentiellen Energie	190	
	7.8	Feldenergie und potentielle Energie	195	
	7.9	Leistung	198	
8	Imp	ılserhaltung – Bruce Willis rettet die Welt	201	
	8.1	Kann man einen Asteroiden sprengen?	202	
	8.2	Der Impulserhaltungssatz		
	8.3	Impulssatz für offene Systeme	210	
	8.4	Der Asteroid wird gesprengt: Anwendung der Erhaltungssätze		
	8.5	Modell des Asteroiden als Schutthaufen		
	8.6	und wie sieht es in der Realität aus?		
9	Raketen – Der Start einer Saturn V 21			
	9.1	Kann man mit einer Kanone bis zum Mond schießen?	220	
	9.2	Gravitationspotential und Fluchtgeschwindigkeit		
	9.3	Raketenantrieb		
	9.4	Der Start einer Saturn V		
	9.5	Die Raketengleichung		
	9.6	Flugbahn und Geschwindigkeit von Apollo 12	242	
	9.7	Beschleunigung während des Raketenstarts	246	
	9.8	Das Stufenprinzip		
	9.9	Was ist J002E3?		
10	Himmelsmechanik – Per Anhalter zu den Planeten 25			
	10.1	Energien im Sonnensystem		
	10.2	Die keplerschen Gesetze	257	
	10.3	Flächensatz und Drehimpulserhaltung		
	10.4	Hohmann-Übergangsbahnen		
	10.5	Energetik der Reise zum Mars		
		Das Kaninchen-Paradoxon: Gratisenergie für Mitreisende		

Inhaltsverzeichnis 11

11	Elast	ische Stöße – Der Swingby-Mechanismus	285
	11.1	Raumsonden auf dem Weg ins Weltall	286
	11.2	Reisen zu den äußeren Planeten	287
	11.3	Elastische Stöße in einer Dimension	288
	11.4	Einige Spezialfälle	292
	11.5	Elastische Stöße in drei Dimensionen	294
	11.6	Pioneer 10: Start und Flug zu Jupiter	299
	11.7	Das Swingby-Manöver als himmelsmechanisches Problem	302
	11.8	Das Swingby-Manöver als elastischer Stoß	305
	11.9	Der "Grand Tour" von Voyager 2	309
		Pioneer- und Flyby-Anomalie	
			011
12	Geze	iten und beschleunigte Bezugssysteme – Raumstationen	315
	12.1	Schwerelosigkeit und künstliche Gravitation	316
	12.2	Gezeitenkräfte im inhomogenen Gravitationsfeld	317
	12.3	Weltraumseile	
	12.4	Gezeitenkräfte bei Monden und Planeten	
	12.5	Gezeiten auf der Erde	
	12.6	Newtonsche Mechanik in beschleunigten Bezugssystemen	337
	12.7	Künstliche Gravitation in einer rotierenden Raumstation	344
	12.8	Umgang mit Scheinkräften	358
	-		
13	Gleio	chgewicht und Drehbewegungen – Ein Ballett-Divertissement	361
	13.1	Statisches Gleichgewicht	362
	13.2	Drehbewegungen	374
	13.3	Pirouetten und Fouettés	379
	13.4	Gleichgewicht in der Bewegung	
	13.5	Kräfte am starren Körper	
	13.6	Unmögliche Ballettsprünge	396
	13.7	Kreisel	
	13.8	Die Stabilität des Fahrradfahrens	404
14		hrte Bewegungen und Zwangskräfte – Achterbahnen	407
	14.1	Achterbahn-Design	408
	14.2	Energieerhaltung und Geschwindigkeit	408
	14.3	Die Geometrie geführter Bewegungen	413
	14.4	Zwangskräfte	
	14.5	Kreisförmiges Tal und Pendel	
	14.6	Die Achterbahn-Formel	433
	14.7	Airtime – schwerelose Hügel	436
	14.8	Warum gibt es keine kreisförmigen Loopings?	437
	14.9	Der Klothoidenlooping	443
	14.10	Mauskurven	
		Herzlinie	
		Vorn oder hinten sitzen?	

Α	Math	ematische Methoden	\mathbf{A} 1		
	A.1	Vektoren und Skalare	A1		
	A.2	Addition von Vektoren	\mathbf{A}		
	A.3	Skalarprodukt	A3		
	A.4	Komponentendarstellung	A^4		
	A.5	Gemeinheiten beim Fahrradfahren			
	A.6	Das Vektorprodukt	A8		
	A.7	Differentiation von Vektoren	A		
	A.8	Ortsvektor, Geschwindigkeit und Beschleunigung	A		
		Drehwinkel und Winkelgeschwindigkeit			
		Integration von Vektoren			
		Linienintegrale			
	A.12	Gradient und Äquipotentiallinien	A15		
В	Wich	tige Formeln und Gesetze im Überblick	A17		
C	Literatur		A25		
D	Bildr	nachweis	A29		
Sac	Sachregister A				