Inhaltsverzeichnis

vor	wort		15		
Vorl	oemerkı	ıngen	17		
Vor	wort zu	r deutschen Ausgabe	23		
Кар	itel 1	Vektoranalysis	27		
1.1	Vektor	algebra	28		
	1.1.1	Vektoroperationen	28		
	1.1.2	Vektoralgebra in der Komponentenform	31		
	1.1.3	Dreierprodukte	35		
	1.1.4	Orts-, Verschiebungs- und Verbindungsvektoren	37		
	1.1.5	Wie sich Vektoren transformieren	38		
1.2	Differe	entialrechnung	41		
	1.2.1	"Gewöhnliche" Ableitungen	41		
	1.2.2	Gradient	42		
	1.2.3	Der Operator ♥	45		
	1.2.4	Die Divergenz	46		
	1.2.5	Die Rotation	48		
	1.2.6	Produktregeln	50		
	1.2.7	Zweite Ableitungen	52		
1.3	Integralrechnung				
	1.3.1	Pfad-, Flächen- und Volumenintegrale	55		
	1.3.2	Der Fundamentalsatz der Differentialrechnung	61		
	1.3.3	Der Fundamentalsatz für den Gradienten	62		
	1.3.4	Der Fundamentalsatz für die Divergenz	65		
	1.3.5	Der Fundamentalsatz für die Rotation	68		
	1.3.6	Partielle Integration	71		

1.4	Krumm	linige Koordinaten 7	'3
	1.4.1	Sphärische Polarkoordinaten	'3
	1.4.2	Zylinderkoordinaten	9
1.5	Die Dira	ac'sche Deltafunktion8	0
	1.5.1	Die Divergenz von $\hat{\mathbf{r}}/r^2$	0
	1.5.2	Die eindimensionale Dirac'sche Deltafunktion	32
	1.5.3	Die dreidimensionale Deltafunktion	86
1.6	Die The	eorie der Vektorfelder 9	90
	1.6.1	Das Helmholtz-Theorem	90
	1.6.2	Potentiale 9	91
Kapit	tel 2	Elektrostatik 9	97
2.1	Das ele	ktrische Feld9	8
	2.1.1	Einleitung 9	8
	2.1.2	Das Coulomb'sche Gesetz9	99
	2.1.3	Das elektrische Feld	00
	2.1.4	Kontinuierliche Ladungsverteilungen 10)1
2.2	Diverge	enz und Rotation elektrostatischer Felder 10)6
	2.2.1	Feldlinien, Fluss und Gauß'sches Gesetz)6
	2.2.2	Die Divergenz von E	11
	2.2.3	Anwendungen des Gauß'schen Gesetzes	11
	2.2.4	Die Rotation von E	19
2.3	Das ele	ktrische Potential	20
	2.3.1	Einführung in Potentiale	20
	2.3.2	Anmerkungen zu Potentialen	22
	2.3.3	Poisson-Gleichung und Laplace-Gleichung	27
	2.3.4	Das Potential einer örtlich begrenzten Ladungsverteilung 12	28
	2.3.5	Zusammenfassung; Randbedingungen der Elektrostatik 13	32
2.4	Arbeit	und Energie in der Elektrostatik	35
	2.4.1	Die zur Bewegung einer Ladung notwendige Arbeit 13	35
	2.4.2	Die Energie einer Gruppe von Punktladungen	36

	2.4.3	Die Energie einer kontinuierlichen Ladungsverteilung \dots	139
	2.4.4	Anmerkungen zur elektrostatischen Energie	141
2.5	Leiter .		143
	2.5.1	Grundlegende Eigenschaften	143
	2.5.2	Induzierte Ladungen	145
	2.5.3	Flächenladungen und die Kraft auf einen Leiter	149
	2.5.4	Kondensatoren	151
Kapit	el 3	Spezielle Techniken	159
3.1	Laplace	-Gleichung	160
	3.1.1	Einleitung	160
	3.1.2	Die Laplace-Gleichung in einer Dimension	161
	3.1.3	Die Laplace-Gleichung in zwei Dimensionen	162
	3.1.4	Die Laplace-Gleichung in drei Dimensionen	164
	3.1.5	Randbedingungen und Eindeutigkeitssätze	166
	3.1.6	Leiter und der zweite Eindeutigkeitssatz	169
3.2	Die Met	thode der Spiegelladungen	172
	3.2.1	Das klassische Problem der Spiegelladung	172
	3.2.2	Induzierte Flächenladung	173
	3.2.3	Kraft und Energie	174
	3.2.4	Andere Spiegelladungsprobleme	175
3.3	Separat	ion der Variablen	179
	3.3.1	Kartesische Koordinaten	180
	3.3.2	Sphärische Koordinaten	191
3.4	Multipo	olentwicklung	202
	3.4.1	Näherungsweise Potentiale in großen Entfernungen	202
	3.4.2	Monopol- und Dipol-Terme	206
	3.4.3	$Koordinate nursprung\ in\ Multipolen twicklungen \dots$	209
	3.4.4	Das elektrische Feld eines Dipols	210

Kapitel 4		Elektrische Felder in Materie	221
4.1	Polaris	ation	222
	4.1.1	Dielektrika	222
	4.1.2	Induzierte Dipole	222
	4.1.3	Ausrichtung polarer Moleküle	225
	4.1.4	Polarisation	228
4.2	Das Fel	ld eines polarisierten Objekts	229
	4.2.1	Gebundene Ladungen	229
	4.2.2	Physikalische Interpretation der Polarisationsladungen	233
	4.2.3	Das Feld im Inneren eines Dielektrikums	236
4.3	Die ele	ktrische Verschiebung	238
	4.3.1	Das Gauß'sche Gesetz in der Anwesenheit von Dielektrika	238
	4.3.2	Eine irreführende Parallele	242
	4.3.3	Randbedingungen	243
4.4	Lineare	e Dielektrika	244
	4.4.1	Suszeptibilität, Dielektrizitätskonstante, Dielektrizitätszahl	244
	4.4.2	Randwertprobleme bei linearen Dielektrika	251
	4.4.3	Energie in dielektrischen Systemen	257
	4.4.4	Kräfte auf Dielektrika	260
Kapi	tel 5	Magnetostatik	269
5.1	Die Lo	rentz-Kraft	270
	5.1.1	Magnetfelder	270
	5.1.2	Magnetische Kräfte	272
	5.1.3	Ströme	277
5.2	Das Bio	ot-Savart'sche Gesetz	285
	5.2.1	Stationäre Ströme	
	5.2.2	Das Magnetfeld eines stationären Stroms	286
5.3	Diverg	enz und Rotation von B	292
	5.3.1	Geradlinige Ströme	292
	5.3.2	Divergenz und Rotation von B	293

	5.3.3	Anwendungen des Ampère'schen Gesetzes	296
	5.3.4	Vergleich zwischen Magnetostatik und Elektrostatik	305
5.4	Magnet	isches Vektorpotential	308
	5.4.1	Das Vektorpotential	308
	5.4.2	Zusammenfassung, magnetostatische Randbedingungen	316
	5.4.3	Multipolentwicklung des Vektorpotentials	319
Kapit	tel 6	Magnetische Felder in Materie	335
6.1	Magnet	isierung	336
	6.1.1	Diamagnete, Paramagnete und Ferromagnete	336
	6.1.2	Drehmomente und Kräfte auf magnetische Dipole	336
	6.1.3	Effekt eines Magnetfelds auf die Umlaufbahnen in Atomen	341
	6.1.4	Magnetisierung	343
6.2	Das Fel	d eines magnetisierten Objekts	344
	6.2.1	Polarisationsströme	344
	6.2.2	$Physikalische\ Interpretation\ von\ Polarisationsstr\"{o}men\$	348
	6.2.3	Das magnetische Feld im Inneren von Materie	350
6.3	Das ma	gnetische Hilfsfeld H	350
	6.3.1	Das Ampère'sche Gesetz in magnetisierten Materialien	350
	6.3.2	Eine irreführende Parallele	355
	6.3.3	Randbedingungen	356
6.4	Lineare	und nichtlineare Medien	357
	6.4.1	Magnetische Suszeptibilität und Permeabilität	35 <i>7</i>
	6.4.2	Ferromagnetismus	361
Kapit	tel 7	Elektrodynamik	371
7.1	Elektro	motorische Kraft	372
	7.1.1	Ohm'sches Gesetz	372
	7.1.2	Elektromotorische Kraft	380
	7.1.3	Dynamische elektromotorische Kraft	382
7.2	Elektro	magnetische Induktion	390

	7.2.1	Das Faraday'sche Gesetz
	7.2.2	Das induzierte elektrische Feld
	7.2.3	Induktivität
	7.2.4	Energie in Magnetfeldern
7.3	Die Ma	xwell'schen Gleichungen
	7.3.1	Die Elektrodynamik vor Maxwell
	7.3.2	Wie Maxwell das Ampère'sche Gesetz reparierte 417
	7.3.3	Die Maxwell'schen Gleichungen
	7.3.4	Magnetische Ladung 421
	7.3.5	Maxwell'sche Gleichungen in Materie
	7.3.6	Randbedingungen
		Zwischenakt
Kapi	tel 8	Erhaltungssätze 443
8.1	Ladun	g und Energie
	8.1.1	Die Kontinuitätsgleichung
	8.1.2	Der Poynting'sche Satz
8.2	Impuls	3 449
	8.2.1	Das dritte Newton'sche Gesetz in der Elektrodynamik
	8.2.2	Der Maxwell'sche Spannungstensor
	8.2.3	Impulserhaltung
	8.2.4	Drehimpuls
Kapi	itel 9	Elektromagnetische Wellen 467
9.1	Weller	ı in einer Dimension
	9.1.1	Die Wellengleichung
	9.1.2	Sinusförmige Wellen
	9.1.3	Randbedingungen: Reflexion und Transmission 474
	9.1.4	Polarisation
9.2	Elektr	omagnetische Wellen im Vakuum479

	9.2.1	Die Wellengleichung für E und B	479
	9.2.2	Monochromatische ebene Wellen	481
	9.2.3	Energie und Impuls in elektromagnetischen Wellen	484
9.3	Elektro	magnetische Wellen in Materie	487
	9.3.1	Ausbreitung in linearen Medien	487
	9.3.2	Reflexion und Transmission bei senkrechtem Einfall	489
	9.3.3	Reflexion und Transmission bei schrägem Einfall	491
9.4	Absorp	tion und Dispersion	498
	9.4.1	Elektromagnetische Wellen in Leitern	498
	9.4.2	Reflexion an einer leitenden Oberfläche	502
	9.4.3	Die Frequenzabhängigkeit der Dielektrizitätskonstante	504
9.5	Geführt	e Wellen	511
	9.5.1	Wellenleiter	511
	9.5.2	TE-Wellen in rechtwinkligen Wellenleitern $\ldots \ldots$	514
	9.5.3	Koaxiale Übertragungsleitungen	518
Kapit	el 10	Potentiale und Felder	523
10.1	Der Pot	entialformalismus	524
	10.1.1	Skalare und Vektorpotentiale	524
	10.1.2	Eichtransformationen	527
	10.1.3	Coulomb-Eichung und Lorentz-Eichung	529
10.2	Kontinu	uierliche Verteilungen	531
	10.2.1	Retardierte Potentiale	531
	10.2.2	Die Jefimenko-Gleichungen	536
10.3	Punktla	dungen	539
	10.3.1	Liénard-Wiechert-Potentiale	539
	10.3.2	Die Felder einer bewegten Punktladung	545
Kapitel 11		Strahlung	553
11.1	Dipolst	rahlung	554
	11.1.1	Was ist Strahlung?	554

	11.1.2	Elektrische Dipolstrahlung 55	5
	11.1.3	Magnetische Dipolstrahlung	2
	11.1.4	Strahlung aus einer beliebigen Quelle	6
11.2	Punktla	ndungen57	2
	11.2.1	Abgestrahlte Leistung einer Punktladung 57	2
	11.2.2	Strahlungsreaktion 57	8
	11.2.3	Die physikalische Grundlage der Strahlungsreaktion 58	3
Kapit	el 12	Elektrodynamik und Relativität 59	3
12.1	Die spe	zielle Relativitätstheorie59	4
	12.1.1	Die Einstein'schen Postulate	4
	12.1.2	Die Geometrie der Relativitätstheorie 60	1
	12.1.3	Die Lorentz-Transformationen	3
	12.1.4	Die Struktur der Raumzeit	1
12.2	Relativ	istische Mechanik 62	9
	12.2.1	Eigenzeit und Eigengeschwindigkeit	9
	12.2.2	Relativistische Energie und relativistischer Impuls 63	2
	12.2.3	Relativistische Kinematik	4
	12.2.4	Relativistische Dynamik	0
12.3	Relativ	istische Elektrodynamik64	8
	12.3.1	Magnetismus als relativistisches Phänomen 64	8
	12.3.2	Wie sich Felder transformieren	1
	12.3.3	Der Feldtensor	1
	12.3.4	Elektrodynamik in Tensornotation	4
	12.3.5	Relativistische Potentiale	8
Anha	ang A	Vektoranalysis in krummlinigen Koordinaten 67	5
A.1	Einfüh	rung	5
A.2	Schreil	oweisen 67	5
A.3	Gradie	nt 67	6
A.4	Diverge	enz 67	7

A.5	Rotation	n	680
A.6	Laplace	-Operator	682
Anha	ng B	Das Helmholtz-Theorem	683
Anha	ng C	Einheiten	687
Index			691