Inhaltsverzeichnis

Kursiv gekennzeichnete Abschnitte können beim ersten Durcharbeiten überschlagen werden.

1	Grundlagen der Mikrophysik	1
	1.1 Aussagen der Quantenmechanik	1
	1.1.1 Photonen als Teilchen	2
	1.1.2 Emission und Absorption von Licht	4
	1.1.3 Elektronen als Wellen	5
	1.1.4 Heisenbergsche Unschärferelation	6
	1.1.5 Pauli-Prinzip	7
	1.2 Das Bohrsche Atommodell	7
	1.3 Freie Elektronen	11
	1.3.1 Wie entstehen freie Elektronen?	11
	1.3.2 Zur Energieeinheit Elektronenvolt	13
	1.3.3 Zusammenhang Energie – Impuls/Wellenzahl	14
	1.4 Aufbau der Atome und Periodensystem	15
	1.5 Kristallstrukturen und Geometrie	18
	1.5.1 Bravais-Gitter und Elementarzellen	18
	1.5.2 Atomabstände und Packungsdichten	20
	1.5.3 Kristallrichtungen und Millersche Indizes	21
	1.5.4 Massen und Dichten von Halbleitersubstanzen	23
	1.6 Chemische Bindung	25
	1.6.1 Übersicht über die Bindungsarten	25
	1.6.2 Verbreiterung der Energieniveaus zu Bändern	
	1.7 Halbleiter	
	1.7.1 Orientierung an der elektrischen Leitfähigkeit	31
	1.7.2 Bindungen und Bänder in Halbleitern	32
	1.7.3 Halbleitermaterialien	
	1.8 Einige Ergänzungen	35
	Zusammenfassung zu Kapitel 1	
	Aufgaben zu Kapitel 1	

2	Bäi	nderstruktur und Ladungstransport	45
	2.1	Bändermodell	46
		2.1.1 Eigenschaften des Leitungs- und Valenzbandes	46
		2.1.2 Erzeugung "freier" Elektronen und Löcher	50
	2.2	Trägerdichte im Leitungs- und Valenzband	52
		2.2.1 Zustandsdichte der Elektronen und Löcher	52
		2.2.2 Fermi-Verteilung	55
		2.2.3 Teilchenkonzentration in den Bändern	57
		2.2.4 Bestimmung der Fermi-Energie	62
	2.3	Halbleiter mit Störstellen	63
		2.3.1 Donatoren und Akzeptoren	63
		2.3.2 Bindungsenergie von Ladungsträgern an Störstellen	64
		2.3.3 Ladungsträgerkonzentration bei Anwesenheit von Störstellen	
	2.4	Die Bewegung von Ladungsträgern	72
		2.4.1 Drift	72
		2.4.2 Anwendung: Widerstandsthermometer	77
		2.4.3 Hall-Effekt	
		2.4.4 Diffusion	82
		2.4.5 Einstein-Beziehung	84
		2.4.6 Generation und Rekombination	85
		2.4.7 Kontinuitätsgleichungen	89
		2.4.8 Halbleiter im stationären Nichtgleichgewicht	
	2.5	Temperaturabhängigkeit von Energielücke und effektiver Masse	
		Halbleiter bei hohen Ladungsträgerdichten	
		2.6.1 Trägerkonzentration im Leitungsband	
		2.6.2 Gapschrumpfung	
	2.7	Einige Ergänzungen	
		2.7.1 Bandstruktur von Halbleitern	
		2.7.2 Ein- und zweidimensionale Halbleiter	
		2.7.3 Der Teilchenzoo der Halbleiterphysik	
	Zus	ammenfassung zu Kapitel 2	
		fgaben zu Kapitel 2	
		5	
_		***	
3		Übergänge	
		Modell einer Halbleiterdiode	
	3.2	pn-Übergang ohne äußere Spannung	
		3.2.1 Qualitative Betrachtungen	
		3.2.2 Berechnung des Potentialverlaufs	
		3.2.3 Breite der Sperrschicht	
		3.2.4 Diffusionsspannung	
	3.3	pn-Übergang mit äußerer Spannung	
		3.3.1 Modell	
		3.3.2 Breite der Sperrschicht	
		3.3.3 Berechnung der Ströme	133

Inhaltsverzeichnis xiii

	3.3.4 Strom-Spannungs-Kennlinie	. 137
	3.3.5 Lawinen- und Zener-Effekt	
	3.4 Kapazität eines pn-Übergangs	
	3.4.1 Sperrschichtkapazität	
	3.4.2 Diffusionskapazität	
	3.5 Differentieller Widerstand und Leitwert	
	3.6 Esaki- oder Tunneldiode	
	3.7 Einige Ergänzungen zu pn-Übergängen	
	Zusammenfassung zu Kapitel 3	
	Aufgaben zu Kapitel 3	
	B	
		1/1
4	Optoelektronische Bauelemente	
	4.1 Lumineszenz-Bauelemente	
	4.1.1 Lichtemission an pn-Übergängen	
	4.1.2 Lumineszenzmaterialien	, 162
	4.1.3 Spektralabhängigkeit der Lumineszenz	
	bei Band-Band-Übergängen	
	4.1.4 Aufbau und Technologie von Lumineszenzdioden	
	4.1.5 Entwicklungstendenzen bei Lumineszenzdioden	
	4.2 Einiges über Halbleiterlaser	
	4.2.1 Übersicht	
	4.2.2 Grundsätzliches zur Funktionsweise	
	4.2.3 Optischer Einschluss (Confinement)	
	4.2.4 Besetzungsinversion und Gewinn	
	4.2.5 Bilanzgleichungen für Elektronen und Photonen	
	4.3 Absorptions-Bauelemente	
	4.3.1 Physikalische Grundlagen der Absorption	
	4.3.2 Photoleiter	
	4.3.3 Photodioden und weitere Photodetektoren	
	4.3.4 Materialien für optische Empfänger	. 197
	4.3.5 Entwicklungstendenzen bei Photodetektoren	
	4.4 Solarzellen – Photovoltaik	
	Zusammenfassung zu Kapitel 4	
	Aufgaben zu Kapitel 4	. 206
5	Bipolartransistoren und Thyristoren	. 211
_	5.1 Einfaches Transistormodell	
	5.2 Abschätzung der Verstärkungswirkung	
	5.2.1 Definition verschiedener Verstärkungsfaktoren	
	5.2.2 Diffusionsstrom in der Basis	
	5.2.3 Größenordnung der Stromverstärkung	
	5.3 Ebers-Moll-Gleichungen	
	5.3.1 Relativ einfache Herleitung	
	5.3.2 Zusammenfassung der Herleitung	
		است

	5.3.3 Allgemeine Form der Ebers-Moll-Gleichungen	228
	5.3.4 Verschiedene Näherungen für die Ebers-Moll-Gleichunge	n229
	5.4 Herleitung der Ebers-Moll-Gleichungen	
	aus den Diffusionsgleichungen	232
	5.4.1 Ansätze für die Diffusionsströme	
	5.4.2 Lösungen der Diffusionsgleichungen	233
	5.5 Kennlinienfelder	235
	5.5.1 Kennlinienfelder in Basisschaltung	
	5.5.2 Kennlinienfelder in Emitterschaltung	
	5.5.3 Early-Effekt	
	5.6 Ergänzungen zu Bipolartransistoren. Tendenzen	
	5.7 Thyristoren und Triacs	
	5.7.1 Modell eines Thyristors. Thyristorkennlinie	
	5.7.2 Gleichungen für den Vorwärtsstrom	
	5.7.3 Triacs	
	Zusammenfassung zu Kapitel 5	
	Aufgaben zu Kapitel 5	250
6	Metall-Halbleiter-Kontakte und Feldeffekt-Transistoren	257
Ů	6.1 Metall-Halbleiter-Kontakte	
	6.1.1 Schottky-Dioden	
	6.1.2 Ohmsche Kontakte	
	6.2 Einführung in Feldeffekttransistoren	
	6.2.1 Die verschiedenen Typen von Feldeffekttransistoren	
	6.2.2 Einfaches Modell	
	6.3 Detailliertere Beschreibung des MOSFET	
	6.3.1 Ladungszustände eines MOS-Kondensators	
	6.3.2 Quantitative Betrachtung der Inversionsbedingung	
	6.3.3 Ladungen, Kapazität und Sperrschichtbreite	
	am MOS-Kondensator	275
	6.3.4 Verfeinerte Herleitung der Kennliniengleichung	
	6.3.5 MOS-Kondensator mit Berücksichtigung	
	der beweglichen Ladungsträger	283
	6.4 MOSFETs in der digitalen Schaltungstechnik	
	6.4.1 Binäre Schaltungen	
	6.4.2 MOSFET als Inverter	
	6.4.3 MOSFET als Lastwiderstand	
	6.4.4 MOSFET als Logikgatter	
	6.4.5 CMOS-Inverter und CMOS-Logikgatter	
	6.4.6 Bipolartransistoren in integrierten Schaltungen	
	6.5 Speicherschaltkreise	
	6.5.1 RAM-Speicher	
	6.5.2 ROMs	
	6.5.3 EPROMs und EEPROMs	

	6.6 CCD-Bauelemente			
	6.7 Sperrschicht-Feldeffekt-Transistoren			
	6.8 Zur Zukunft der MOS-Technologie			
	Zusammenfassung zu Kapitel 6			
	Aufgaben zu Kapitel 6			
7	Halbleitertechnologie			
	7.1 Vom Sand zum Chip: Fertigungsschritte im Überblick			
	7.2 Herstellung von Silizium-Einkristallen			
	7.2.1 Rohsilizium			
	7.2.2 Trichlorsilan und Polysilizium			
	7.2.3 Herstellung von Einkristallen			
	7.3 Herstellung von Einkristallen anderer Halbleiter			
	7.3.1 Germanium			
	7.3.2 Besonderheiten bei der Herstellung von Verbindungshalbleitern 313			
	7.4 Herstellung und Bearbeitung der Halbleiterscheiben			
	7.4.1 Übersicht			
	7.4.2 Oxidation			
	7.4.3 Dotieren			
	7.4.4 Epitaxieverfahren			
	7.4.5 Metallisierung durch Aufdampfen und Sputtern			
	7.4.6 Ätzen			
	7.4.7 Reinigen			
	7.5 Lithographie			
	7.6 Reinraumtechnik			
	7.7 Ein Beispiel für die Technik integrierter Schaltungen			
	7.8 Tendenzen der Halbleitertechnologie			
	Zusammenfassung zu Kapitel 7			
	Aufgaben zu Kapitel 7			
A	nhang: Daten- und Formelsammlung			
L	iteraturverzeichnis			
V	erzeichnis der Internet-Dateien			
Verwendete Formelzeichen				
Index				
D	orcononindov 407			