Hans-Jürgen Bolle, Matthias Eckardt, Dirk Koslowsky, Fabio Maselli, Joaquín Meliá Miralles, Massimo Menenti, Folke-Sören Olesen, Ljiljana Petkov, Ichtiaque Rasool, Adriaan Van de Griend (Eds.)

Mediterranean Landsurface Processes Assessed From Space

With 442 Figures, 320 in colour

Contents

Chapter 1	Introduction	1
1.1 Spa	ace View and Ground Observations	1
1.2 Me	diterranean Climatic Environment	2
1.3 Pro	cesses at Surfaces	10
1.3.1	Deforestation and Land-use Changes	10
1.3.2	Water Related Problems	16
1.3.3	Fire, Grazing, and Land Degradation	19
1.3.4	Drought, Floods, Frost, and Desertification	21
1.3.5	Coupling Between Surface and Atmosphere:	
	The Role of the Atmospheric Boundary Layer	25
1.4 Ro	e and Capabilities of Measurements Made From Space	30
1.4.1	Research Programmes	30
1.4.2	Expected Information	32
1.4.3	Research Strategy	33
1.4.4	Observation of Changes in Heterogeneous Landscapes:	
	Spatial and Temporal Scales	35
1.4.5	Land-surface Change Indicators Observable from Space	36
	Spectral Characteristics of Vegetation and Soils (36);	
	Responses of Remote Sensing Signals to Changes of	
	Land-surface Properties (40)	
1.5 Ab	out this Book	48
Chapter 2	Processing and Archiving of Satellite and Ancillary Data	51
2.1 Int	roduction	51
2.2 Th	e Remote Sensing Data Base	55
2.2.1	Satellite Instruments	55
	The NOAA Observing System (55); Meteosat (57);	
	Nimbus-7 (59); Landsat (59); SPOT (61); DMSP (62);	
	ERS-1 and ERS-2 (62); TRMM (63); Terra (64); Envisat (65);	
	Aqua (66)	
2.2.2	Aircraft Instruments	66
	The Use of Aircraft for Land-surface Process Studies (66);	
	AVIRIS (67); TMS (68); AIRSAR (68); DIAL (69)	
2.3 Re	ception, Acquisition and Availability of Satellite Data	70
2.3.1	Reception of AVHRR (HRPT) Data	70
2.3.2	Reception of Meteosat Data	72
2.3.3	Acquisition of Landsat TM Data	72

2.3.4	Acquisition of SPOT Data	73
2.3.5	Acquisition of Nimbus SMMR and NOAA-AVHRR GAC Data	73
2.3.6	Acquisition of ERS 1/2 Data	74
2.4 Ca	libration of Satellite Data	74
2.4.1	Calibration of the AVHRR Short Wave Channels	74
	Detection and Causes of Signal Degradation (74); Effective	
	Signal Degradation of the NOAA-11 AVHRR Shortwave	
	Channels (75); Intercalibration of NOAA-14 and NOAA-11	
	Instruments (81); Comparison with Other Calibration	
	Studies (83); Intercalibration Between NOAA-16 and	
	NOAA-11 Instruments (84)	
2.4.2	Calibration of AVHRR Thermal Channels	88
2.4.3	Conversion of Meteosat Signals to Absolute Values	90
	Visible Channel (90); Infrared Channel (92)	
2.4.4	Conversion of Landsat Data to Absolute Values	92
2.4.5		93
2.4.6	Calibration of Nimbus 7 SMMR Data and Orbit Stability	95
	oreferencing and Geographical Registration	96
2.5.1	Georeferencing of AVHRR Data	96
2.5.2	Map Projections and Registration Methods	96
2.5.3	Universal-Transversal-Mercatorprojection (UTM)	99
	oud Detection and Elimination	100
2.6.1	Definition of the Cloudless Atmosphere and "Cloud Screening"	100
	Previous Cloud Detection Algorithm	100
2.6.3	Cloud Mask Generation Used for the MEDOKADS Product:	
• • • •	The Dynamic Threshold Algorithm	101
2.6.4	Improved APOLLO Cloud Analysis	103
2.6.5	Reconstruction of Cloudless Time Series with the Aid of	104
	Fourier Components	104
	Time Series Analysis (104); Fourier Transform (105);	
	Harmonic Analysis of Numerical Time Series (HANTS) (107)	110
	cillary Data	112
2.7.1	Introduction Elevation of Land Surface	112
2.7.2		113
2.7.3	State of the Atmosphere	114
	Operational Data Sources (114); Water Vapour (116); Ozone (122); Aerosol (122); Comparative Surface	
	Measurements (126)	
2.8 Sat	tellite Data Archiving	128
2.8 5a	Development of Physical Archives Media	128
2.8.1	Examples of Data Archives	120
2.0.2	Raw Data Archive At the Free University of Berlin (130);	130
	Preprocessed AVHRR Data Remapped to Polar Stereographic	
	Map Projection (130)	
2.8.3	The Mediterranean Extended Daily One-km AVHRR	
2.0.5	Data Set (MEDOKADS) of the Free University of Berlin	131

Contents

2.8.4	Other Satellite Data Archives AVHRR Data (133); Archives of Meteosat Data (134); Windscatterometer Data (134); Towards a Distributed On-line Access Archive (135)	133
Chapter 3	Radiative Processes of the Surface - Atmosphere System	137
•	oduction	137
3.2 Inte	eractions of Electromagnetic Waves with the Surface	139
3.2.1	Elementary Processes	139
	Plain Surfaces (139); Scattering and Reflection From Complex	
	Surface Structures (145); Reflectance Terminology (148)	
3.2.2	Solar Radiation	151
	Interaction With Soils (151); Interaction with Water and Wet	
	Surfaces (153); Interaction With Vegetation Covered	
	Soils (154); The Albedo Dilemma (157); Net Radiation at	
	Inclined Surfaces (158)	150
3.2.3	Thermal IR Radiation	159
3.2.4	Microwave Radiation Spectral Range (161); Technology (162); Dielectric	161
	Constant (163); Emission (164); Effect of Vegetation (166)	
	Reflection and Scattering (167)	
3.3 Atr	nospheric Radiative Transfer	168
3.3.1	Processes	168
3.3.2		171
3.3.3	Radiative Transfer in Absorbing and Emitting Atmospheres	173
3.3.4	The Overlapping Region Around 3 µm	176
	diation Codes Suited for Atmospheric Corrections	177
3.4.1	A Landsat-TM scheme	177
3.4.2	A One Parameter Meteosat and NOAA-AVHRR Scheme	179
3.4.3	Split-window Technique (SWT)	180
3.4.4	Multi-angle Methods	182
3.4.5	The HITRAN, MODTRAN, and LOWTRAN Family	183
3.4.6	The "Simulation of the Satellite Signal in the Solar	
	Spectrum" Algorithm	185
3.4.7	Autonomous Atmospheric Compensation (AAC)	187
3.4.8	A Four-stream Atmospheric Correction Procedure for	
	Broadband Albedo	188
3.5 Fro	m Basic Theory to Application	189
Chapter 4	Primary Level Products	191
	roduction	191
4.2 Fro	om Radiance to Reflectance	193
4.2.1	Top of Atmosphere Spectral Reflectance	193
4.2.2	Normalization of TOA-data for Illumination and	
	Observation Geometry	194
	Methods (194); Results of Model Calculations (195);	

XIII

	Empirical Determination of the BRDF (202)	
4.2.3	Some Immediate Conclusions	207
4.2.4	From TOA to Surface Reflectance	207
4.3 Int	ercomparison and Validation of Reflectance Measurements	209
	Techniques	209
	Test for Atmospheric Correction	210
4.3.3	Area Integrated Reflectances of the EFEDA Experimental	
	Areas Derived From Landsat-TM and AVHRR Data	211
4.3.4	Comparative Ground Based Measurements	212
	General Remarks (212); Albedometer Measurements (212);	
	Reflectance Spectra (218); Radiometric Measurements	
	(219); Comparison with Satellite Data (219)	
4.4 Ra	diometric Temperatures	222
4.4.1	Infrared TOA Radiometric Temperatures	222
4.4.2	Radiometric Surface Temperatures	223
4.4.3	Sea Surface Temperatures (SST)	224
4.4.4	Analytic Representation of the Diurnal Temperature Cycle	225
4.4.5		228
Atmos	spheric Effects on Microwave Signals	232
4.4.7	Validation of Radiometric Temperatures	232
	Thermal Infrared Radiometric Temperatures (232);	
	Microwave Brightness Temperatures (234)	
4.5 Ac	tive Microwave Products	234
4.5.1	Primary Products	234
4.5.2	Validation of Active Microwave Data	240
4.6 Ve	getation Indices	241
4.6.1	Spectral Shortwave Indices	241
4.6.2	Microwave Indices	244
	Microwave Polarization Difference Index (244); MPDI and	
	NDVI (245)	
Chapter 5	Higher Level Variables and Their Validation	249
	roduction	249
	diative Properties of Land Surfaces I: Emissivity and	249
	ermodynamic Temperature	251
5.2.1	TISI Algorithm	251
	Relation Between Emissivity and NDVI	257
	Validation	.258
	diative Properties of Land Surfaces II:	,200
	bad-band Hemispherical Reflectance	265
5.3.1	Narrow-band to Broad-band Conversion	265
5.3.2	Validation	203
	diation Fluxes	276
5.4.1	Nomenclature	276
5.4.2	Net Shortwave Radiation Flux Density	276
5.4.3	Net Longwave Radiation Flux Density	281
	· · · · · · · · · · · · · · · · · · ·	

5.4.4 5.4.5	Radiant Exposure Validation	283 285
5.4.5	Instrumentation (285); Typical Radiation Fluxes at the	205
	Surface (289); Comparison with Satellite Data (291);	
	Radiation Fluxes at High Spatial Resolution (295)	
5.5 Sur	face Heat Fluxes	297
5.5 30	Theoretical Basis	297
5.5.2	Computation Schemes	297
5.5.4	DEMI-SEC (299); SEBAL (299); Hydrological Approach (305)	299
5.5.3	Results and Validation	307
5.5.5	Surface Temperatures as Wetness Indicator (307); Soil Heat	307
	-	
	Flux (308); Sensible and Latent Heat Fluxes (314); Diurnal	
	Evolution of Fluxes (320); Other SEBAL Products:	
5 (II.)	Resistance to Evaporation (323)	225
•	drological Aspects I: Soil Moisture	325
5.6.1	Dual-Frequency Approach	325
5 ()	Algorithm (325); Validation (326)	
5.6.2	Estimating Near Surface Soil Moisture with SAR Systems	327
	Introduction (327); Method (328); SAR Estimates of Soil	
	Moisture Content During Efeda-spain and Hapex-sahel (331);	
	Conclusions (337)	
	drological Aspects II: Precipitation	337
	icators of Vegetation Conditions	341
5.8.1	Photosynthetic Active Radiation, Vegetation Indices and LAI	341
	Definitions (341); Leaf Area - Vegetation Index	
	Relationship (342); "Red Edge" Shift and Chlorophyll	
	Content (345)	
5.8.2	Field Radiometry and Data Processing	346
5.8.3	A Case Study on Corn and Barley	348
	Experimental Site and Ground Measurements (348); Results of	
	Broad Band Analysis (350); Results of the High Spectral	
	Resolution Analysis (353)	
5.8.4	Comments	354
5.8.5	Canopy Water Content Derived from Optical Data	355
	Algorithm (355); Results (358)	
5.9 Cli	mate Aspects	363
Chapter 6	From Research to Application	369
6.1 Inti		369
	sphere Processes: Key Variables, Models and Scales	373
6.2.1	Main Driving Variables of Biosphere Processes	373
0.2.1	Processes (373); Models (375)	010
6.2.2	Local Processes and Global Models: Spatial Heterogeneity	
0.2.2	and Scaling	377
6.2.3	From Local to Global Scales	381
	paracterization of Local Vegetation Development	383
01		

6.4 Change Detection Methods	389
6.4.1 Mapping and Monitoring of Land-surface Changes	389
6.4.2 Change Detection Techniques	390
6.5 Scales of Land-surface Variability	393
6.5.1 Spatial Pattern	393
Mediterranean Topographic Structures (393); Vertical	
Structures (400)	
6.5.2 Classification and Aggregation	403
6.5.3 Temporal Scales	405
6.6 Combination of Satellite Data of Different Provenience	407
6.6.1 Integration of Data with Different Spatial and Temporal	
Features	407
6.6.2 Merging NOAA-AVHRR and Landsat-TM Vegetation In	ndices 407
6.7 Multispectral Classification of Land-surface Types	413
6.7.1 Methodology	413
6.7.2 Example of a supervised classification	413
6.7.3 Surface Discrimination by Application of the Temperatur	
Independent Spectral Indices (TISI)	416
Introduction (416); Methodology of Parameters Retrieval	(417);
Data Used (417); Conclusions (421)	
6.7.4 Vegetation Canopy Characterization by Microwave	
Transmittance	421
6.8 Decomposition of Pixel Contents	423
6.8.1 Spectral Decomposition	423
Prerequisits (423); Theory (424); Example (427)	
6.8.2 Fractional Vegetation Cover Determination by Unmixing	
Surface Temperature	429
6.9 Seasonal and Interannual Variability as Seen in NOAA-AVH	RR
Images	433
6.9.1 Thermal Infrared Data Series	433
6.9.2 Short-wave Channels Data Series	437
The Role of Vegetation as Change Indicator (437); Basin	-wide
Data Representation (438); Regional Variability (444)	Ĩ.
6.10 Vineyard Change Detection	453
6.10.1 Introduction	453
6.10.2 Methodology	454
6.10.3 Results	454
6.11 Estimation of Weather Impact on Vegetation Cover Along the	e .
Israeli Transition Zone Using AVHRR Data	461
6.11.1 Introduction	461
6.11.2 Study Area	462
6.11.3 Method	462
6.11.4 Results and Discussion	463
6.11.5 Conclusion	467
6.12 Monitoring of Soil Moisture Fields and Change Detection by	
Passive Microwave Remote Sensing	469

6.12.1	Introduction	469
6.12.2	The Dual-Frequency Approach	469
	Available Data and Validation	471
	Degradation/Aridification Mapping over the Iberian Peninsula	472
	gration of Conventional and Remote Sensing Data to Model	
	nspiration of Forest Mediterranean Ecosystems	477
	Background	477
	The Model FOREST - BGC	478
	Study Area and Data	479
	Ancillary Data	480
	Topography (480); Meteorological Data (481); Surface Data:	
	Leaf Area Index (481); Surface Data: Transpiration (481);	
	Satellite Images (482)	
6135	Data Processing	482
0.15.5	Evaluation Strategy (482); Simulation of Meteorological Data	102
	for the Forest Test Sites (483); Derivation of LAI Profiles	
	From Different Sources (483); Calibration and Validation of	
	FOREST-BGC (484)	
6136	Results	485
0.15.0	Simulated Meteorological Data (485); Measured and Estimated	105
	Daily LAI profiles (486); Model Calibration (487); Model	
	Validation (487)	
6137	Study Area San Rossore	489
	Conclusions	491
	of GAC NDVI Data for Cropland Identification and Yield	471
	ecasting in Mediterranean African Countries	493
	Introduction	493
	Study Area	494
0.14.2	Environmental Features (494); Agricultural Features (495)	777
6.14.3	· · · + · · · ·	495
0.14.5	Cartographic Data (495); Crop Yield Data (496); Satellite	-175
	Data (496)	
6 14 4	Data Processing and Results	497
0.14.4	Computer Facilities (497); Pre-processing (497); Correlation	177
	Analysis with Global NDVI Data (497); Correlation Analysis	
	with NDVI Data of Single Land Cover Classes (498);	
	Correlation Analysis with NDVI Data of Selected Pixels (500);	
	Evaluation of Produced Maps (504); Evaluation of the	
	Procedure for Operational Yield Forecasting (504)	
6 1 4 5	Conclusions	505
	bught and Fire Impacts	507
	Introduction	507
	Climatological Characterization and Preliminary Analysis of	507
0.15.2	Burned Area in A Study Pilot Area	508
6 15 2	Satellite Image Processing	510
	Forest Evolution and its Relationship with Rainfall:	510
0.13.4	FORSE EVOLUTION and its relationship with rannall.	

Application to Post-fire Evolution 51 Site Selection (512); Temporal Characteristics of NDVI and its Relationship with Rainfall (513)	12
1	17
1 •	16
	21
6.16 Assimilation of Initial Soil Moisture Fields with Meteosat and	~~
	23
	23
6.16.2 Assessment of the Land Surface Energy Balance Using	
	25
	28
Basic Assimilation Steps (528); Horizontal Averaging (529);	
Verification of Results (530)	_
•	30
Selected Case Study (530); Verification of Sebal-results with	
Ground Based Flux Measurements (532); Construction of A	
New Soil Moisture Field (533); Results of Simulations with	
the New Initial Soil Moisture Field (534)	
1	37
6.17 Methodology for Validation of Remote Sensing Data Products:	
	41
	41
	42
1	45
6.17.4 Scientific Objectives of the Valencia Anchor Station 54	45
Definition of A Large Scale Validation Area for Low Spatial	
Resolution Missions (545); Definition and Characterisation of	
A Large Scale Reference Pixel (546); Scaling Issues:	
Aggregation and Disaggregation, Time Interpolation and	
Spatial Averaging (547)	
6.17.5 Specifications of the Valencia Anchor Station 54	48
6.17.6 Simulation of Top of the Atmosphere Ceres Radiances 55	53
6.17.7 Conclusions and Future Activities 55	56
6.18 Assessment of Land-surface Changes in Space and Time –	
General Conclusions 55	59
Appendices 56	63
Appendix 1 The ECHIVAL Field Experiment in Desertification	
	65
	65
•	66
1	85
	88
	91
	95
	99

Appendix 3 Soils	603
A.3.1 Description of Soils	603
A.3.2 Soil Types	603
A.3.3 Soil Degradation	608
Appendix 4 Characteristics of Earth Observation Satellites and	
Remote Sensing Instruments	611
A. Satellites and Their Instruments	611
B. Aircraft Instruments	628
Appendix 5 Useful Formulae and Data	631
A.5.1 The Spectrum of the Solar and Terrestrial Radiation	631
A.5.2 Solar Radiation	632
A.5.3 Airmass	636
A.5.4 Optical Depth of the Atmosphere	637
A.5.5 Determination of the Optical Depth From the Ground	638
A.5.6 Relationship Between UTM and Longitude/Latitude	
Coordinates	639
A.5.7 Evaporation Equivalents	641
A.5.8 Relationship Between Dielectric Constant and Soil Moisture	641
Appendix 6 Spectral Measurements	643
A.6.1 Introduction	643
A.6.2 Atmospheric Infrared Spectra	643
A.6.3 Spectral Atmospheric Transmission and Optical Depth in the	
Wavelength Range of Solar Radiation	648
A.6.4 Angular Distribution of Spectral Longwave Infrared Surface	
Reflectance	653
A.6.5 Spectrometric Field Measurements of Surface Reflectance	659
A.6.6 Spectral Surface Reflection and Albedo	669
Appendix 7 Scintillometry	681
Appendix 8 AVHRR Time Series	685
A.8.1 Presentation of Large Scale Satellite Data Time Series	685
A.8.2 Temperature Time Series	687
A.8.3 AVHRR Short-wave Channel Products	692
Goal (692); Potential Error Sources (693); Mean Value and	
Trend Maps (699); Striking Deviations From Mean Values	
During the Period from 1989 to 2004 (710); Conclusions (710)	
- C	715
eferences	715

Reference Glossary Index

745 749

XIX